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Abstract: The AdS/CFT duality has established a mapping between quantities in the

bulk AdS black-hole physics and observables in a boundary finite-temperature field the-

ory. Such a relationship appears to be valid for an arbitrary number of spacetime dimen-

sions, extrapolating the original formulations of Maldacena’s correspondence. In the same

sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been

proved to be universal. We investigate in this work the complete quasinormal spectra

of gravitational perturbations of d-dimensional plane-symmetric AdS black holes (black

branes). Holographically the frequencies of the quasinormal modes correspond to the poles

of two-point correlation functions of the field-theory stress-energy tensor. The important

issue of the correct boundary condition to be imposed on the gauge-invariant perturba-

tion fields at the AdS boundary is studied and elucidated in a fully d-dimensional context.

We obtain the dispersion relations of the first few modes in the low-, intermediate- and

high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type

low-frequency quasinormal mode is analytically and numerically confirmed. These results

are found employing both a power series method and a direct numerical integration scheme.
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1 Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence [1–3] has been widely

recognized as an important tool to explore a variety of non-perturbative aspects of strongly

coupled gauge theories. Holographic string-theory models are now used to study the physics

of strong interactions and condensed matter, both in the zero- and finite-temperature

regimes (see, e.g., refs. [4–10] for reviews and lecture notes on AdS/CFT applications to

QCD and condensed matter physics). One of the essential ingredients of this approach

is the weak/strong relationship between the coupling constants [11]. When the ’t Hooft

coupling of the large-N CFT is strong, string theory on AdS spacetime reduces to classical

supergravity theory. In such context one can investigate diverse phenomena in a class of

strongly interacting field theories by doing the computations on the gravity side of the

correspondence. Among other results, this procedure has allowed the determination of

near-equilibrium properties of the dual CFT plasma, such as transport coefficients like

viscosity, conductivity and diffusion constants [12–17].

The AdS/CFT correspondence is also used to study fundamental questions in gravi-

tational physics, which are hard or even impossible to be addressed within current gravity

theories, such as the nature of spacetime singularities [18–22] and the loss of information in

black holes [23, 24]. Even in regimes for which it is possible to obtain results from gravity

theories, the AdS/CFT correspondence leads to new interpretations of those results. One

example is the evolution of classical fields in the neighborhood of asymptotically AdS black

holes (black branes). The vectorial sector of gravitational perturbations presents a fun-

damental quasinormal mode (QNM) frequency which is purely damped and goes to zero

in the small wavenumber limit. The unusual behavior of this mode was not understood

from a strictly gravitational point of view [25–28]. However, based on the AdS/CFT dual-

ity and taking into account the expected features of low-energy fluctuations in interacting

field theories, Policastro, Son and Starinets [13, 14] were able to interpret such quasinormal

mode as the dual of the shear transverse mode predicted by relativistic fluid mechanics.

– 1 –
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Some works [29, 30] then suggested that the old ‘membrane-paradigm’ framework [31–33],

in which the (stretched) horizon is interpreted as a fluid, could be used to explain the

hydrodynamic properties of black holes, and this very important concept was incorporated

in the physics of dynamical classical fields in AdS spacetimes.

The hydrodynamic behavior of AdS black hole fluctuations, in particular the univer-

sality of such a behavior for four, five, and seven spacetime dimensions, both at first-

and second-order expansions in the frequency and momentum [34–39], is now a generally

accepted property of AdS black holes (see also refs. [40–47] for recent developments in

the fluid/gravity correspondence). However, there are several other features of the quasi-

normal spectra of AdS black holes and black branes which were not considered in higher

dimensional spacetimes, especially in the case of gravitational perturbations. Such a study

is important because, among others, it allows one to verify if there are aspects of the

spectra which are specific to a given spacetime dimension, or which aspects are dimension-

independent. One example is the crossover from the hydrodynamic regime to a “colisionless

regime” appearing in four and five spacetime dimensions [48–51]. For any event-horizon size

(or temperature), there is a critical wavenumber value above which the late-time evolution

of the vector-type gravitational fluctuations is dominated by the first gapped quasinormal

mode and not by the hydrodynamic shear mode. A possible extension of this crossover

for perturbations of higher-dimensional AdS black holes (and black branes) has not been

investigated yet. This is one of the goals of the present work.

There are other important issues in the study of the vibrational modes of AdS black

branes to be analyzed in a fully d-dimensional context. We can mention the arbitrariness

in the choice of gauge-invariant combinations of metric variations as fundamental variables

of the gravitational perturbations. Another related issue is the ambiguity in defining an

appropriate condition for the quasinormal modes at AdS spacetime boundary. Historically,

the perturbation variables are chosen in such a way that the radial part of the fundamental

equations takes a Schrödinger-like form when written in terms of the Regge-Wheeler tor-

toise coordinate. These are called the Regge-Wheeler-Zerilli (RWZ) variables. In some of

the works on this subject [52–55] the authors have chosen RWZ type variables and argued

that, according to the AdS/CFT duality, the conditions to be imposed at AdS bound-

ary are such that gravitational perturbations do not deform the boundary metric. In the

four-dimensional case, Michalogiorgakis and Pufu [53] showed that a Robin boundary con-

dition is the correct condition to be imposed on the RWZ master variable governing the

scalar-type perturbations. With such a boundary condition they were able to obtain, for

instance, the hydrodynamic wave sound mode which had not been obtained in early works

using RWZ variables and a Dirichlet condition at AdS boundary [25–28]. A different route

was taken in refs. [51, 56], where the ambiguities characteristic of classical-field dynamics

at AdS spacetimes were eliminated by defining the quasinormal (QN) frequencies as the

poles, in the space of frequency and momentum, of retarded Green functions in the dual

field theory. In this approach, the standard tools to compute real-time Green functions

from holography [57–59] are used in order to find the correct boundary conditions that

should be imposed on metric perturbations at the AdS boundary. Any set of perturbation

functions chosen to fulfill these requirements are called Kovtun-Starinets (KS) variables.

– 2 –
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In particular, it was shown that Dirichlet boundary conditions and KS type variables lead

to the correct quasinormal spectra of AdS black branes in four and five spacetime dimen-

sions [51, 56]. These and other related subjects are investigated here considering AdS black

branes in spacetimes of arbitrary number of dimensions.

The present work also aims to address other issues. For instance:

(i) establish (numerically) the stability of black branes against scalar-type perturbations,

a result that was proved only for four-dimensional black holes and black branes [60];

(ii) analyze the causality of signal propagation in the dual CFT plasma using recent

results on the eikonal limit of the QNM spectra [61, 62];

(iii) use a time evolution method to investigate the absence/presence of power-law tails at

late stages of the evolution of perturbations in higher dimensional AdS black branes,

and;

(iv) search for the highly real modes found analytically by Daghigh and Green [63, 64],

but were not confirmed numerically until this moment.

The structure of this work is the following. In the next section we define the d-dimensional

AdS black brane spacetime and the conventions adopted in the main body of the work.

In section 3 it is presented the one-dimensional Schrödinger-like equations obtained in

ref. [65] for the RWZ master variables. The same section is also devoted to obtain the

fundamental equations for the Kovtun-Starinets variables using the partially covariant and

totally gauge-invariant formalism of Kodama, Ishibashi and Seto [66]. In section 4 we

analyze which boundary conditions should be imposing on KS and RWZ variables in order

to obtain the same spectrum in each perturbation sector. The analysis is performed for an

arbitrary number of spacetime dimensions. Section 5 is devoted to report a few interesting

analytical results. The numerical results are presented and analyzed in section 6. In

section 7 the QNM are analyzed in terms of the AdS/CFT correspondence, and in the

section 8 we make final comments and conclude.

2 The background spacetime

The background spacetime considered here represents a d-dimensional plane-symmetric

asymptotically anti-de Sitter (AdS) black hole, or simply an AdS black brane [67–72]. The

spacetime can be locally written as a product of a two-dimensional spacetime N 2, spanned

by a timelike coordinate t and a radial spacelike coordinate r, and a (d − 2)-dimensional

space Kd−2 with constant sectional curvature K = 0 [65, 66]. With such a decomposition,

the background metric in Schwarzschild-like coordinates takes the form

ds2 =
r2

R2

[

−f(r) dt2 +

d−1
∑

i=2

dxidxi

]

+
R2

r2f(r)
dr2, (2.1)

for which

f(r) = 1 − rd−1
h

rd−1
, (2.2)

– 3 –
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with rh being the event horizon radius, and R the AdS radius. The coordinates xi, i =

2, 3, . . . , d − 1, span the Kd−2 space.

The Hawking temperature of the black brane is

T =
(d − 1)rh

4πR2
, (2.3)

and the AdS radius R is given in terms of the negative cosmological constant Λ through

the relation

R2 = −(d − 2)(d − 1)

2Λ
. (2.4)

The radial coordinate r covers, without singularities, the whole region of interest for

the analysis of the QNM of the AdS black hole of metric (2.1), namely, the range (rh,∞).

To simplify the analysis, as usual we introduce a new coordinate which is defined in a finite

interval. This is done through the following re-parameterization

u =
rh

r
, (2.5)

which results in

f(u) = 1 − ud−1 . (2.6)

Now the event horizon is located at u = 1, and the AdS spatial infinity (r → ∞) is at

u = 0. Hence, we have u ∈ (1, 0), and the metric (2.1) becomes

ds2 =
r2
h

u2R2

[

−f(u) dt2 +
d−1
∑

i=2

dxidxi

]

+
R2

u2f(u)
du2. (2.7)

In the following, coordinates (t, u) are labeled as xa, a = 0, 1, i.e., coordinates t and u span

the relevant region of N 2 outside the horizon.

The foregoing black-brane spacetime has been extensively studied in the last years in

connection with the AdS/CFT correspondence, specially for d = 4, 5 and 7 dimensions. In

such a cases the metric (2.7) can be seen as part of nonextremal solutions to the supergravity

equations of motion in ten or eleven dimensions [11, 73]. The near-horizon limit of the full

supergravity spacetime is the direct product of an AdSd black brane and a SD−d sphere,

where D = 10 for d = 5 and D = 11 for d = 4 and 7. The internal degrees of freedom

corresponding to the (D − d)-dimensional sphere will not be important for the present

work, since we are interested in the correlators of the CFT energy-momentum tensor and,

according to the gauge/gravity dictionary [5, 74], this operator is dual to the gravitational

fluctuations of the background spacetime (2.7).

The general properties of metric perturbations of the considered d-dimensional black

branes are investigated in the next section where we write the fundamental equations that

govern the evolution of gravitational perturbations in these asymptotically AdS spacetimes.

3 Fundamental equations for the gravitational perturbations

Following the procedure presented in ref. [66], the gravitational perturbations are expanded

in terms of harmonic functions on Kd−2 and the first-order perturbed Einstein equations are

– 4 –
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given in terms of a set of gauge-invariant quantities. These quantities are combinations of

the metric perturbations hαβ which are related to the perturbed spacetime metric through

the usual definition gαβ = g(0)

αβ+hαβ , where g(0)

αβ stands for the background metric defined by

eq. (2.7). The gravitational perturbations are grouped into three distinct classes (sectors)

according to the special type of harmonic tensors that appear in the expansions of hαβ .

These can be tensorial, vectorial, or scalar perturbations, corresponding respectively to the

scalar, shear and sound symmetry channels for the gravitational fluctuations considered in

ref. [56]. Each one of these sectors is governed by a particular closed group of independent

differential equations. It is possible to choose a particular set of master variables which

allows to write only one perturbation equation for each perturbation sector, as, for instance,

the RWZ set of variables adopted in ref. [65]. Another interesting set of variables (KS

variables) were first used in ref. [56]. Here we present the fundamental equations for KS

variables in d spacetime dimensions, and establish a connection between RWZ and KS

variables. The gauge-invariant metric perturbation nomenclature and labelling follows

ref. [66].

3.1 Metric perturbations

3.1.1 Tensorial sector

This particular set of gravitational perturbations can be represented in terms of tensorial

harmonics Tij, in the form

hab = 0, hai = 0, hij = 2u−2HT Tij, (3.1)

where HT = HT (t, u) is a gauge-invariant function depending on the coordinates t and u

only, and Tij are transverse traceless harmonic tensors defined on Kd−2 [66].

3.1.2 Vectorial sector

Metric perturbations of vectorial type can be expanded in terms of vectorial harmonic

functions Vi as follows

hab = 0, hai = u−1faVi, hij = 2u−2HV Vij, (3.2)

where fa = fa(t, u) and HV = HV (t, u) are scalar functions of the coordinates on N 2, to be

determined, and Vij are vector-type harmonic tensors on Kd−2 built from the transverse

harmonic vectors Vi (see ref. [66]). From the functions fa and HV it is defined a new set

of gauge-invariant quantities Fa (a = 0, 1) given by

Fa = fa +
1

uk
DaHV , (3.3)

where k is the perturbation wavenumber, and Da is the covariant derivative in the space N 2.

3.1.3 Scalar sector

Scalar gravitational perturbations are the set of metric perturbations which can be ex-

panded in terms of scalar harmonic functions S in the form

hab = fab S, hai = u−1fa Si, hij = 2u−2 (HLγijS + HSSij) , (3.4)

– 5 –
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where fab = fab(t, u), fa = fa(t, u), HL = HL(t, u) and HS = HS(t, u) are functions to

be determined. Si and Sij are respectively scalar-type harmonic vectors and tensors on

Kd−2 built from the scalar harmonic functions S (see ref. [66]). A set of gauge-invariant

quantities are then defined as

F = HL +
1

n
HS + uDa

(

1

u

)

Xa,

Fab = fab + DaXb + DbXa,

(3.5)

with

Xa =
1

uk

(

fa +
1

uk
DaHS

)

. (3.6)

Now we write the gravitational fundamental equations for each perturbation sector

and each set of variables, RWZ and KS.

3.2 Master equations for the RWZ variables

Kodama and Ishibashi [65] showed that for a black brane in four or more spacetime dimen-

sions, the Einstein equations for the gravitational perturbations can be reduced to three

independent second-order wave equations in a two-dimensional static spacetime, one equa-

tion corresponding to each one of the perturbation modes. Moreover, the variable for the

final second-order master equation for a specific mode is given by a simple combination of

gauge-invariant quantities in the formalism of ref. [66]. It is introduced new variables Φp so

that, after Fourier decomposition of such perturbation functions, Φp(t, u) =
∫

Φp(u) eiωtdω,

the perturbation equations take a Schrödinger-like form,

d2Φp

dr2∗
+ (w2 − Vp)Φp = 0, (3.7)

where r∗ is the normalized tortoise radial coordinate, defined by du/dr∗ = −f(u). The

label p can be T, V or S depending of the perturbation sector: tensorial, vectorial and

scalar, respectively. Vp is the effective potential, and the parameter w is the normalized

frequency defined by

w =
(d − 1)ω

4πT
=

R2

rh
ω, (3.8)

where T stands for the Hawking temperature of the black brane.

Next we define the RWZ variable Φp for each perturbation sector and the corresponding

effective potentials.

3.2.1 Tensorial sector

As argued in ref. [65], the simplest function ΦT that allows to write the resulting pertur-

bation equation in a Schrödinger-like form is

ΦT = u− d−2
2 HT , (3.9)

– 6 –



J
H
E
P
0
9
(
2
0
0
9
)
1
1
7

where HT (introduced in eqs. (3.1)) is a gauge-invariant quantity by itself [66]. In such a

case, the potential VT (cf. eq. (3.7)) for this sector is given by

VT (u) = f(u)

[

q2 +
d(d − 2)

4u2
+

(d − 2)2ud−3

4

]

. (3.10)

Here the parameter q is the normalized wavenumber defined by

q =
(d − 1) k

4πT
=

R2

rh
k. (3.11)

3.2.2 Vectorial sector

The variable ΦV is defined implicitly by (see ref. [65])

F a = ud−3 ǫabDb

(

u− d−2
2 ΦV

)

, (3.12)

where F a is the gauge-invariant quantity defined in eq. (3.3) [66], and ǫab is the Levi-Civita

tensor in the two-space N 2. The corresponding effective potential for the vectorial sector

VV is

VV (u) = f(u)

[

q2 +
(d − 2)(d − 4)

4u2
− 3(d − 2)2ud−3

4

]

. (3.13)

3.2.3 Scalar sector

In this sector, the RWZ variable ΦS suggested in ref. [65] is given by

ΦS =
2(d − 2)u− d−4

2

2q2 + (d − 1)(d − 2)ud−3

(

2F

u
+

if(u)Fut

w

)

, (3.14)

where F and Fut are the gauge-invariant quantities given by eqs. (3.5) [66], and the effective

potential is

VS(u) =
f(u)Q(u)

4 [2q2 + (d − 1)(d − 2)ud−3]
2 . (3.15)

Here Q(u) is given by

Q(u) = (d − 2)3 [d + (d − 2)(1 − f) ]
f ′2

u4
− 4(d − 2)

[

(d − 5)(d − 2)(d − 1) + (d − 2)2f

−4(1 − f)]
f ′

u3
q2 + 4(d − 6) [d − 4 − 3(d − 2)(1 − f)]

1

u2
q4 + 16q6. (3.16)

3.3 Master equations for the KS variables

Another choice of fundamental variables for the gravitational perturbations was firstly

suggested by Kovtun and Starinets [56]. A set of master equations for the Kovtun-Starinets

(KS) variables in d = 4 and 5 dimensions were obtained in refs. [51, 56]. In connection with

the formalism of ref. [66], we present here the fundamental equations for the KS variables

in d spacetime dimensions.

– 7 –
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3.3.1 Tensorial sector

For d spacetime dimensions the KS variable for the tensorial sector ZT is defined by

ZT = HT/2, (3.17)

where HT is the gauge-invariant quantity introduced in eqs. (3.1). In terms of ZT (u),

defined by ZT (t, u) =
∫

ZT (u) eiωtdω, the perturbation equation for the tensorial sector is

given by

Z ′′
T
−

[

d − 1 − f

uf

]

Z ′
T

+

[

w2 − q2f

f2

]

ZT = 0, (3.18)

where the primes indicate derivatives with respect to the coordinate u, and f = f(u)

is the horizon function defined in eq. (2.6). This equation reduces to the corresponding

perturbation equation of ref. [56] when one takes d = 5 and makes the adjustments for

different notation and normalizations.

3.3.2 Vectorial sector

In connection with the formalism developed by Kodama, Ishibashi and Seto [66], the KS

master variable for the vectorial gravitational perturbations takes the form

ZV = Ft/u, (3.19)

where Ft is the gauge-invariant quantity of ref. [66], as defined in eq. (3.3). With this vari-

able, after Fourier decomposition as in the tensorial case, we obtain the following equation

Z ′′
V
−

[

d − 2

u
+

f ′w2

f(q2f − w2)

]

Z ′
V

+

[

w2 − q2f

f2

]

ZV = 0, (3.20)

which is the master equation for the vectorial metric perturbations of d-dimensional black

branes in terms of the KS gauge-invariant variable ZV . The general expression eq. (3.20)

reduces to the equations for vector perturbations in four and five spacetime dimensions, as

seen in [51, 56].

3.3.3 Scalar sector

Again inspired in the work by Kovtun and Starinets [56], we write the following gauge-

invariant quantity to describe the scalar-type gravitational perturbations,

ZS = u2Ftt +
[

(d − 1)ud−1 + 2f(u)
]

F , (3.21)

where Ftt and F are gauge-invariant quantities defined in eqs. (3.5) [66]. With this expres-

sion it is shown that ZS satisfies the following differential equation

Z ′′
S

+
Y1q

2 + Y2w
2

uf X
Z ′

S
+

Y3q
2 + Y4q

4 + 2 (d − 2)w4

f2 X
ZS = 0, (3.22)

– 8 –
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where we have introduced the coefficients

X = 2 (d − 2)w2 − [d − 3 + (d − 1)f ] q2,

Y1 = 2(d − 2)2f2 + (d − 1) (d − 1 + f)ud−1,

Y2 = −2(d − 2) [d − 1 − f ] ,

Y3 = −(d − 3)f ′2f −
[

4(d − 2)f + (d − 1)ud−1
]

w2,

Y4 =
[

2(d − 2) + (d − 1)ud−1
]

f.

It is important to mention that eq. (3.22) can be reduced to the scalar perturbation equation

of [51] when one takes d = 4, and to the corresponding equation of [56] when one takes

d = 5.

4 Gauge-invariant variables and boundary conditions

It is known that ingoing wave condition at horizon and Dirichlet condition at AdS boundary

applied to the Regge-Wheeler-Zerilli (RWZ) variables does not give all the QNM of a given

perturbative sector due to the choice of the boundary condition at spatial infinity [51]. In

particular, the sound wave mode in four dimensional spacetimes does not show up [25–

28]. On the other hand, using the same boundary conditions and Kovtun-Starinets (KS)

gauge-invariant variables the mentioned sound wave mode appeared [16, 51], and it was

also verified that in some cases RWZ and KS yield different non-hydrodynamic quasinormal

frequencies [51]. In these circumstances one must be able to decide which spectrum has

a meaningful physical interpretation. In accordance to the AdS/CFT correspondence we

opt for the QN frequencies obtained from the poles of the related two-point correlation

functions, i.e., we choose the spectrum obtained by applying an ingoing wave condition at

horizon and a Dirichlet boundary condition at u = 0 to the KS gauge-invariant variables

Zp(u) [56]. However, it is known that different master variables can lead in special cases to

the same spectrum, as it happens with the polar and axial gravitational perturbations of

asymptotically flat four-dimensional black holes [75]. Having this in mind the objective in

this section is to investigate which boundary conditions must be applied to each variable in

order to produce the QNM spectrum corresponding to the poles of the stress-energy tensor

correlators in the dual field theory. A comparison among the spectra obtained with the

same boundary conditions applied to the RWZ quantities Φp(u) and to the KS variables

Zp(u) is also done. The first step is then to find the asymptotic form of the perturbation

functions Zp, i.e., we try solutions of the form Zp ∼ uν , where ν is a parameter to be

determined. We find that eqs. (3.18), (3.20) and (3.22) are satisfied in the limit u → 0 if

ν = 0, or if ν = d − 1. Therefore the solutions for Zp(u) which satisfy the incoming-wave

condition at horizon, here denoted by Z in
p (u), present the following asymptotic behavior

around u = 0:

Z in

p (u) = Ap(w, q) + . . . + Bp(w, q)ud−1 + . . . , (4.1)

where p =T, V, S refers respectively to the tensorial, vectorial, and scalar perturbation

sectors. The ellipses in the foregoing equation denote higher powers of u, and quantities
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Ap(w, q) and Bp(w, q) are the connection coefficients related to the respective differen-

tial equations. After eqs. (4.1) one finds that Dirichlet boundary conditions imposed on

Z in

p (u) give

Z in

p (0) = Ap(w, q) = 0, p = T, V, S. (4.2)

The next step is to study the relations among the KS Zp(u) and the RWZ Φp(u)

variables at the AdS boundary and to find the relations between the QNM spectra, which

we call the KS- and the RWZ-spectra, respectively, for short. We do that by considering

separately each one of the perturbation sectors.

4.1 Tensorial sector

For the tensorial gravitational sector, we were able to find an explicit relation between

the RWZ variable ΦT (u) and the KS gauge-invariant variable ZT (u) for any spacetime

dimension. It is given by

ZT (u) =
1

2
u

d−2
2 ΦT (u) . (4.3)

Furthermore, it can be shown from eqs. (3.7) and (3.10) that at the asymptotic region

Φin
T (u) is of the form

Φin

T (u) = CT (w, q)u− d−2
2 + . . . + DT (w, q)u

d
2 + . . . , (4.4)

agreeing with the asymptotic form for d spacetime dimensions found in refs. [52, 53]. The

asymptotic expressions for ΦV and ΦS obtained below (see eqs. (4.6), (4.10), and (4.11))

are also in accordance with those found in refs. [52, 53]. As mentioned above, the Dirichlet

boundary condition at u = 0 imposed on Z in

T
(u) requires that AT (w, q) = 0, which is the

same as the condition one obtains by imposing Dirichlet boundary condition on the RWZ

variable Φin
T (u). Namely, the relations (4.1), (4.3) and (4.4) imply in AT (w, q) = CT (w, q) =

0. Now since the equation AT (w, q) = 0 furnishes the spectrum of the QNM one concludes

that the spectra of the tensorial gravitational QNM obtained by using KS or RWZ variables

are identical for all dimensions d > 4.

4.2 Vectorial sector

In the case of gravitational vectorial perturbations, we can show that the KS and RWZ

variables are related by

ZV (u) = fud−2 ∂

∂u

(

u− d−2
2 ΦV (u)

)

. (4.5)

Now eqs. (3.7) and (3.13) yield the following asymptotic form for the solution Φin
V (u) which

satisfy an incoming-wave condition at the horizon:

Φin

V (u) = CV (w, q)u− d−4
2 + . . . + DV (w, q)u

d−2
2 + . . . . (4.6)

Therefore, eqs. (4.1), (4.5) and (4.6), and the Dirichlet boundary condition at u = 0

imposed on Z in
V (u) imply in AV (w, q) = −(d − 3)CV (w, q) = 0, from what one concludes

that the KS and the RWZ quasinormal spectra are identical to each other for all dimensions

d ≥ 4.
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4.3 Scalar sector

For the scalar gravitational sector we were not able to find a simple relation between ZS(u)

and ΦS(u), and then the analysis becomes more evolved than for the other sectors. After

some algebra we find

2(d − 2)
[

2q2u − (d − 2) f ′
]2

ZS(u) =

{

− 2(d − 2)3f ′2 w2 (4.7)

+(d − 2)
[

(d − 2) g(u)ud−3 + 4h(u) q2
]

q2

+4
[

2(d − 2) − (d − 3)ud−1
]

u2 q6

}

u
d−2
2 ΦS(u)

+
(

2q2u − (d − 2) f ′
) [

(d − 1)(1 − f)− 4(d − 2)(d − 3)f2
]

q2 u
d−2
2 Φ′

S(u),

where the coefficients h(u) and g(u) are defined by

h(u) =2 + (d − 2)(d − 5) − [3 + (d − 10)(d − 2)] ud−1

+ (d − 4)(d − 3)u2(d−1) − 2u2w2, (4.8)

g(u) =2
[

1 + (d − 2)2 + 2(d − 2)3
]

ud−1 − (d − 3)2(d − 1)u2(d−1)

− 2(d − 1)
[

(d − 2)(d − 3) + 4u2w2
]

. (4.9)

Using eqs. (3.7) and (3.15) for the RWZ scalar variable ΦS(u) we find the following

asymptotic form for the incoming-wave solution at the horizon Φin
S :

Φin

S (u) = CS(w, q)u− d−6
2 + . . . + DS(w, q)u

d−4
2 + . . . , d 6= 5, (4.10)

Φin

S
(u) = [CS(w, q) + . . . + DS(w, q) lnu + . . .]

√
u, d = 5, (4.11)

where CS and DS are the connection coefficients associated to eq. (3.7).

Since the asymptotic forms of Z in
S and Φin

S critically depend on the number of dimen-

sions we analyze the cases d = 4, d = 5 and d > 5 separately.

4.3.1 Four dimensions

In the four-dimensional case (d = 4), eqs. (4.7) and (4.10), and the Dirichlet boundary

condition on Z in

S
(u) lead to the condition

CS(w, q) +
3DS(w, q)

q2
= 0. (4.12)

In terms of the RWZ variable Φin
S (u), this is a boundary condition of Robin type, i.e.,

a mixing between Dirichlet and Neumann boundary conditions. Therefore, in order for

both of the spectra being the same, and in order for the QN frequencies being given by

the poles of the dual stress-energy tensor correlator, one must impose Dirichlet boundary

condition on Z in
S (u) at u = 0 and Robin boundary condition on Φin

S (u) at u = 0. This result

explains why Dirichlet boundary conditions imposed on Z in
S (u) and Φin

S (u) lead to different

quasinormal spectra. In ref. [53] it was argued that the non-deformation of the boundary

metric favors a Robin condition on the master field ΦS(u), and using such a boundary
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condition they have found the hydrodynamic QNM of the scalar gravitational sector in the

d = 4 Schwarzschild-AdS spacetime. Our result is consistent with that analysis, since both

of the results are identical for large rh/R, a regime where the Schwarzschild-AdS black hole

reduces to the AdS black brane. As a matter of fact, it can be shown that for a spacetime

in which the subspace K2 has constant curvature K and the event horizon is such that

rh ≫ R, the relation (4.12) is replaced by CS +3DS/(q2 −2KR2/r2
h) = 0, which reproduces

our result for K = 0, and the result of ref. [53] for K = 1 and q2 = l(l + 1)R2/r2
h, where l

is the angular momentum of the perturbation.

4.3.2 Five dimensions

The asymptotic form for Φin

S
(u) for d = 5 is given by eq. (4.11). The Dirichlet boundary

condition on Z in

S
(u) at u = 0, together with eqs. (4.7) and (4.11), furnishes the follow-

ing condition

DS(w, q) = 0. (4.13)

This is equivalent to the condition of not changing the metric on the AdS boundary, as

shown in ref. [52] in the case of a spherically symmetric AdS5 black hole. Hence, using

eqs. (4.13) and (4.11) it is found that the RWZ variable ΦS(u) and the KS variable ZS(u)

yield the same quasinormal spectrum in five-dimensional spacetimes as soon as one imposes

the condition Φin
S /

√
u − CS = 0 at infinity (u → 0).

4.3.3 Six and higher dimensions

Following the same procedure as for d = 4 and d = 5 above, Dirichlet boundary condition

Z in
S (u = 0) = 0 and eqs. (4.7) and (4.10) yield

(d − 3)(d − 5)CS(w, q) = 0, (4.14)

from what we conclude that for (d − 3)(d − 5) 6= 0 the quasinormal spectra furnished by

the master variables ZS(u) and ΦS(u) are identical.

It is worth stressing here the relevance of the above results. They allow us to use the

most convenient gauge-invariant equations for each specific case. For instance, whenever

one has any kind of difficulty in finding QN frequencies with a certain set of equations

based, say, on the KS gauge-invariant variables, one can try the other set of equations,

based on the RWZ variables. Moreover, some numerical methods require Schrödinger-like

equations such as in the case of the time-evolution method used in the present work, as we

will see in section 6.

5 The quasinormal spectra: analytical results

In this section we report on the procedure for calculating the QNM in some asymptotic

limits where results can be expressed in closed form. In particular, the hydrodynamic limit

of the QNM dispersion relations are obtained analytically. A brief analysis of the results is

given for each sector with calculations done considering an arbitrary number of spacetime

dimensions d. Other asymptotic regions of the QNM spectra such as large frequencies and

large spacetime dimensions are also analyzed.
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5.1 The hydrodynamic limit

The hydrodynamic limit is the regime in which ω and k are sufficiently smaller than the

Hawking temperature T , i.e., w, q ≪ 1. In such a regime it is possible to express the

solutions of the perturbation equations in the form of power series in w and q. By keeping

just the lowest order terms one finds the so-called hydrodynamic limit of the dispersion

relations (w → 0, q → 0). Such a procedure is well known in the literature, and we do

not reproduce it here. The hydrodynamic limit of the dispersion relations to first order

approximation are known for some particular number of dimensions. For instance, the

vectorial and scalar sectors with d = 4, 7, were treated in [15, 16], and in five dimensions

the topic was explored in refs. [13, 14, 51, 56]. This limit of the QNM spectra to second

order approximation for d = 4, 5, 7 has been studied in refs. [34–36]. Here we show

the results to first order approximation for all spacetime dimensions and for all sectors

of metric perturbations. We work with the KS gauge-invariant variables and Dirichlet

boundary condition at u = 0.

5.1.1 Tensorial perturbations

In the limit of small frequencies and small wavenumbers we find the solution to eq. (3.18),

satisfying the condition of representing ingoing waves at the horizon, as

Z in

T (u) = CT f iw/(d−1)[1 + O
(

w2
)

], (5.1)

where CT is an arbitrary normalization constant. Imposing the Dirichlet condition at anti-

de Sitter boundary u = 0, namely Z in
T (0) = 0, and noting that f(0) = 1, it follows that

there is no solution to eq. (3.18) satisfying the QNM boundary conditions and being also a

hydrodynamic QNM (i.e., satisfying |w| ≪ 1 and |q| ≪ 1). The non-existence of tensorial

hydrodynamic QNM is compatible with the expectations from hydrodynamics [56].

5.1.2 Vectorial perturbations

The first order perturbative solution to eq. (3.20) satisfying the condition of representing

an ingoing wave at the horizon is given by

Z in

V = CV f iw/(d−1)

[

1 − i q2f

(d − 1)w
+ O

(

w2
)

]

, (5.2)

with CV being a normalization constant. The Dirichlet boundary condition at infinity,

Z in

V
(0) = 0, implies the following dispersion relation:

w =
i

d − 1
q2 + O

(

q3
)

. (5.3)

The dispersion relation (5.3) can be interpreted in terms of traveling waves in non-ideal

fluids. In fact, it is expected from hydrodynamics that a transversal momentum fluctuation

presents a shear mode, corresponding to a purely damped mode with dispersion relation [76]

w = i
4π T

d − 1
D q2, (5.4)
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with D being a diffusion constant carrying dimensions of length. Therefore, the result in

eq. (5.3) agrees with hydrodynamics and the quasinormal frequency can be interpreted as

the dispersion relation for the shear mode, with diffusion constant D = 1/4πT .

Finally, it is worth noticing that relation (5.3) holds for gravitational perturbations

of plane-symmetric black holes in asymptotically AdS spacetimes of any dimension d ≥ 4,

and it is in agreement with previous results for d = 4, 5, 7 (see [13, 15, 37, 38, 51, 56]).

5.1.3 Scalar perturbations

Solving eq. (3.22) perturbatively in a power series in w and q yields

Z in

S = CS f iw/(d−1)

{[

2 − 2(d − 2)
w2

q2
− (d − 3) (f − 1)2

]

+
4iw(d − 3)f

(d − 1)
+ O(w2)

}

,

(5.5)

with CS being an integration (normalization) constant. Imposing the Dirichlet boundary

condition at u = 0 on Z in

S
(u), and taking into account we are working in the hydrodynamic

limit, we obtain

w = ± q√
d − 2

+
(d − 3) i

(d − 2)(d − 1)
q2 + O

(

q3
)

. (5.6)

In order to compare the above result (5.6) to hydrodynamics we first observe that for a

conformal field theory the energy-momentum tensor is traceless, so that the energy density

ε and the pressure P of the dual plasma are related by ε = (d − 2)P and, consequently,

the speed of sound in the medium is vs = |∂P/∂ε|1/2 = 1/
√

d − 2 . Thus, the expected

dispersion relation for the longitudinal momentum fluctuations, in the hydrodynamic limit,

must correspond to the sound wave mode [76]

w = ±vsq +
4π i (d − 3)T

(d − 2)(d − 1)
D q2 . (5.7)

The constant D in eq. (5.7) is the same diffusion constant appearing in eq. (5.4). In fact,

comparing eqs. (5.6) and (5.7) we find D = 1/4πT , agreeing with the value found from the

analysis of the hydrodynamic limit of vectorial perturbations. This shows that the result

given in eq. (5.6) is consistent with the expected result from hydrodynamics. Furthermore,

this result is also in agreement with the previous results in the literature for d = 4, 5, 7

(see [14, 16, 35, 37, 39, 51, 56]).

5.2 Asymptotic analysis of the QNM

5.2.1 Small wavenumbers, large frequencies

There is an alternative analysis for large frequencies with finite wavenumbers, namely

w ≫ q. To first order approximation such a condition is equivalent to the asymptotic limit

q → 0, as far as all the other parameters of the model are kept fixed. That is to say, taking

the limit w → ∞ with fixed q yields the same approximate equation as taking the limit

q → 0 with finite w. For all of the perturbation equations (3.18), (3.20) and (3.22) with a

little algebra we find

Z ′′
p −

[

d − 1 − f

uf

]

Z ′
p +

w2

f2
Zp = 0, (5.8)
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where p denotes the perturbative sector, as already indicated. It is obvious that eq. (5.8)

necessarily imply in identical non-hydrodynamic quasinormal frequencies at q = 0 for all

of the perturbation types. The same result was also found in our numerical calculations,

as it will be seen in the next section (see table 4). With this result we conclude that the

dispersion relations for large frequencies are the same for all the three perturbation sectors

of a black brane, a result which was already obtained by Natário and Schiappa [77] for the

Schwarzschild-AdS (Kottler) solution.

5.2.2 Large number of spacetime dimensions

In this section we analyze the perturbation equations when the number of spacetime di-

mensions is large, namely d → ∞ with finite w and q. For simplicity, in this analysis we

consider the master equations for the RWZ gauge-invariant variables (eq. (3.7)), in which

case the analysis reduces to investigate the asymptotic form of the potentials (3.10), (3.13)

and (3.15) in the limit d ≫ 4. We thus find

VT → d2

4u2
f

(

1 + ud−1
)

, (5.9)

VV → d2

4u2
f

(

1 − 3ud−1
)

, (5.10)

VS → d2

4u2
f

(

1 + ud−1
)

. (5.11)

It is seen that in such a limit the tensorial and scalar potentials are the same. Moreover,

in the intervening region between the AdS boundary and the horizon (0 < u < 1), the

second term of the above expressions within the parentheses tend to zero in the limit

d → ∞, so that the potentials are identical in this region. Moreover, the tensorial, scalar

and vectorial potentials approach the same values at the boundaries, namely limu→0 Vp =

d2/4u2 and limu→1 Vp = 0. These results suggest that the QNM spectra of the three

perturbation sectors for large d are identical. This is an important result because it shows

the isospectrality of the gravitational QNM of higher-dimensional AdS black holes. Let us

observe that this cannot be seen in our graphs because our values of d are not large enough

when compared to the other parameters, in particular d ∼ 4 in our numerical results.

6 Numerical results

6.1 Methods

We use two different methods to determine the gravitational QNM frequencies of the black

branes in the spacetime (2.1). The first one is a series expansion method [74, 78], which

reduces the problem to finding roots of a polynomial. The second method employed in

this work consists on a direct time-evolution of the gravitational perturbations in these

backgrounds [79, 80].

6.1.1 Power series method

The method developed by Horowitz and Hubeny [78] consists in expanding the Fourier

transformed perturbation variables in power series of u around the event horizon, u = 1.
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The condition of ingoing wave at the horizon is imposed on each perturbation function.

More specifically, the first step is to expand each of the functions Zp(u), p =T, V, S in

a Frobenius series of the form Zp(u) = (1 − u)iw/(d−1)
∑

j aj(w, q)(1 − u)j. The Dirichlet

boundary condition at infinity is then imposed, and we obtain an equation in the form of

an infinite sum for the coefficients,

∞
∑

j=0

aj(w, q) = 0, (6.1)

the roots of which yield the dispersion relation w = w(q). During the calculation process,

the infinite sum (6.1) is truncated at a sufficiently large number of terms and then one finds

the roots of a polynomial in w. The accuracy of the results is then verified through the

relative variation between the roots of two successive partial sums. The roots so obtained

are the quasinormal frequencies, which we write as

w = wR + i wI . (6.2)

Even though the method developed by Horowitz and Hubeny [78] is well suited to large

AdS black holes and black branes, it is found that the convergence properties worsen for

large wavenumbers. Moreover, the capability of the Horowitz-Hubeny method in finding the

QN frequencies depends in an unclear way on the variables chosen, on the considered region

of the spectrum one seeks for solutions and on the spacetime dimension. For instance, by

using the master equation for the KS variables, this method produced dispersion relations

of vectorial modes only for q < 4. Then, by shifting to the master equation for the

RWZ variables we were able to find satisfactory results for larger wavenumbers, at least

for d = 4, 5 and 6. For higher spacetime dimensions convergence problems occur for all

perturbation sectors. In particular, for the tensorial and scalar sectors via the master

equations with KS variables the numerical convergence problems of the series solutions

arise for dimensions larger than six (d > 6), and higher overtones (n > 1 or 2), even for

intermediate wavenumber values (q ∼ 1). Because of these convergence problems we used

this method to compute the dispersion relations for the first five quasinormal modes for

each perturbation sector, only for d = 4, 5 and 6. In higher dimensions we used a different

method, a time-domain evolution method, which allows one to read off the fundamental

QNM for each sector, as seen in the following, directly from the decay timescale and ringing

frequency of the signal.

6.1.2 Time evolution method

The time evolution approach employed in the present work is based on a characteristic

initial value formulation of the perturbation wave equations [79, 81, 82]. The time-domain

versions of the equations (3.7) are rewritten in terms of the normalized light-cone variables

w = rh t/R2 − r∗ and v = rh t/R2 + r∗. The wave equations are integrated numerically
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using the finite difference scheme introduced in [80],

[

1 − ∆2

16
Vp(S)

]

Φp(N) = Φp(E) + Φp(W ) − Φp(S)

− ∆2

16
[Vp(S)Φp(S) + Vp(E)Φp(E) + Vp(W )Φp(W )] .

(6.3)

The scalar, vectorial and tensorial sectors are indexed by p. The points N , S, W and

E are defined as: N = (w + ∆, v + ∆), W = (w + ∆, v), E = (w, v + ∆) and S = (w, v).

The discretization step ∆ is a function of the grid size and number of point in the grid [79].

Initial data are specified on the null surfaces w = w0 and v = v0. Since the behavior of

the integrated wave functions is largely insensitive to the choice of initial data (which was

empirically verified in the present scenario), we set Φp(w, v = v0) = 0 and use a Gaussian

pulse as initial perturbation Φp(w = w0, v) = exp[−(v − vc)
2/2σ2]. After the integration is

completed, the values of Φp on selected curves are extracted. The quasinormal fundamental

frequency can (usually) be accurately estimated from the data.

The algorithm precision depends on the number of points and size of the discretized

grid. One basic requirement for the method is the convergence of the code with respect to

the variation of the number of grid points. It was observed in our numerical experiments

that the convergence rate varied with the parameters of the system, with the worse per-

formance in the small q limit for the tensorial and scalar sectors. Since in this limit the

power series method is usually reliable, and the concordance of both methods is very good

in a wide range of parameter space, it is accurate to say that the methods employed in this

work are complementary.

In the following we show some numerical results and analyze in some detail the disper-

sion relations of the fundamental mode, i.e., the QNM with the smallest imaginary part of

the frequency, for each perturbation sector. As we see below, for the vectorial and scalar

sectors, the fundamental modes in the low wavenumber regime are in fact hydrodynamic

QNM, so denominated because they present a characteristic behavior in the hydrodynamic

limit, w → 0 when q → 0. The basic motivation for studying the hydrodynamic modes is

because they are important modes in connection to the AdS/CFT correspondence, since

they furnish (for low q values) the thermalization time in the conformal field theory at AdS

spatial infinity.

6.2 Numerical results for the tensorial QNM

In table 1 we list the values obtained for the QN frequencies of the first five modes (overtone

numbers n = 0, 1, . . . , 4), with q = 0 in five and six spacetime dimensions. From the results

shown in this table, it is seen that the fundamental equation for the tensorial gravitational

perturbations (3.18) for d = 5 and the use of the Horowitz-Hubeny method reproduce the

results in the literature [83] with very good accuracy. For six dimensions, we have not

found any previous result in the literature for comparison.

The dispersion relations for the fundamental tensorial QNM for d = 5, 6, . . . , 10 are

shown in figure 1. The Horowitz-Hubeny method yielded the results for d = 5, 6 and

for small wavenumbers in d = 7. The time-evolution method was used to compute the
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d = 5 d = 6

n wR wI wR wI

0 3.11945 2.74668 4.13591 2.69339

1 5.16952 4.76357 6.60919 4.45349

2 7.18793 6.76957 9.02574 6.19321

3 9.19720 8.77248 11.4241 7.92685

4 11.2027 10.7742 13.8136 9.65854

Table 1. The first five tensorial QNM with zero wavenumber for a plane-symmetric AdS black

hole (black brane) in five and six spacetime dimensions.
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Figure 1. Dispersion relations for the first tensorial QNM of AdS black branes in several dimen-

sions, d = 5, 6, . . . , 10, as indicated. The small wiggles in the curves of the imaginary parts of the

frequencies for larger values of d indicate numerical convergence problems (see the text).

dispersion relations for the other dimensions and for large wavenumbers in d = 7. We

observe some convergence problems for small values of q and d > 7, as it is apparent from

the dispersion relation curves for the imaginary part of the frequency (see the right panel

of figure 1).

It is also apparent in figure 1 that the real and imaginary parts of the QNM frequencies

present an overall behavior that appears to be independent of the number of spacetime

dimensions. Dispersion relations wR(q) approaching straight lines and dispersion relations

wI(q) approaching zero as the wavenumber q increases. The same feature is also shown for

higher overtones in figure 2. However, the larger the overtone index n and/or the larger the

number of dimensions, the faster the frequency wI approaches zero. This is in agreement

with the results by Festuccia and Liu [61] (see also ref. [62]). In fact, it was shown in [61]

by means of analytical methods, and confirmed in [62] through numerical methods, that

the dispersion relations for large wavenumbers are given approximately by wR = q+αRq−β

and wI = αIq
−β , where αR,I are parameters depending on the number of dimensions and

overtone index, and β = (d − 3)/(d + 1).

In figure 2 we have the dispersion relations for the first five tensorial modes in six

dimensions where we can see that for a finite fixed temperature, the imaginary parts of

the frequencies decrease with the wavenumber value, while the real parts increase with the
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Figure 2. Dispersion relations for the first five tensorial QNM of AdS black branes in d = 6.
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Figure 3. Time-evolution profiles of the tensorial mode perturbations for selected values of q in

d = 6 (from top to bottom, for q = 8, 5, 2).

wavenumber. The behavior is qualitatively similar for d = 5.

Time-evolution profiles of the tensorial perturbations can be seen in figure 3. The os-

cillatory decay, which is characteristic of a QNM with wR 6= 0, dominates the intermediate-

and late-time behavior of the wave function ΦT . In contrast with what happens in asymp-

totically flat spacetimes, our numerical results for all perturbation sectors show no sign of

a power-law tail at late stages, in agreement with earlier predictions [78, 84].

As expected from the study of the hydrodynamic limit of tensorial quasinormal modes

given in section 5.1.1, the numerical analysis of eq. (3.18) based on the Horowitz-Hubeny

approach found no QNM satisfying simultaneously the conditions w ≪ 1 and q ≪ 1.

6.3 Numerical results for the vectorial QNM

The frequencies for the hydrodynamic and for the first five non-hydrodynamic vectorial

QNM are shown in table 2, where we have set d = 5, 6 and q = 2. The results for five

– 19 –



J
H
E
P
0
9
(
2
0
0
9
)
1
1
7

d = 5 d = 6

n wR wI wR wI

0 0 1.19612 0 0.87233

1 3.51823 2.58319 4.51460 2.57492

2 5.46616 4.66081 6.88034 4.37633

3 7.43187 6.69069 9.24255 6.13420

4 9.40729 8.70698 11.6070 7.87837

5 11.3889 10.7175 13.9739 9.61647

Table 2. Some data for the frequencies of the vectorial gravitational QNM of five and six dimensions

for q = 2.

dimensions coincide with those of ref. [56]. As far as we are aware of, there are no data in

the literature for comparison to the results shown in table 2 for six dimensions.

In figure 4 we plot the hydrodynamic and the first non-hydrodynamic vectorial QNM

for several dimensions, d = 4, 5, . . . , 10, as indicated (recall that the hydrodynamic modes

are those for which the frequencies w(q) vanish when q → 0). The numerical results

confirm the fact that the hydrodynamic vectorial QNM are purely damped modes, and so

the dispersion relation curves have just the imaginary parts, as shown in the right panel of

figure 4. Since we could not find the QNM using the Horowitz-Hubeny method for d > 7,

the dispersion relations for d = 8, 9, 10 were obtained through a time-domain evolution

method, as described in section 6.1.2, so the curves for the non-hydrodynamic QNM at low

values of q could not be found, because the hydrodynamic mode dominates in that region.

This is clearly seen in the left panel of figure 4, where the dispersion relation curves for

the first non-hydrodynamic mode at small values of q and d = 8, 9, 10 are missing. As a

matter of fact, the curves for d = 7 were obtained by joining the results from both of the

numerical methods used here. We see that the dispersion relations for d = 5, 6, 7 have

all the same behavior. A slight difference is observed in the curve wR × q for d = 4 (see

the lowest curve of the left panel in figure 4) in which it is seen a “knee” around q ≃ 2.

This local minimum in the real part of the frequency is present in all of the gravitational

vectorial modes of the four-dimensional black brane [51]. As seen from figure 4, such a

local minimum disappears in higher dimensions.

Typical time-domain evolution profiles of the vectorial QNM are presented in figure 5.

The transition from the hydrodynamic shear-mode regime of perturbations to the ordinary-

QNM regime appears in the time evolution of ΦV as a transition from non-oscillatory (for

small q) to oscillatory (large q) late-time decay. The left panel of figure 5 exploits exactly

this feature of the vectorial gravitational QNM in d = 6: non-oscillatory time-evolution

for q = 2 and oscillatory time-evolution for q = 5, 8. This transition is important to the

CFT side of the AdS/CFT correspondence, since it is interpreted as the hydrodynamic-

to-collisionless crossover which is expected to arise in generic systems [49, 85]. The right

panel of figure 5, now for seven-dimensional black branes, shows the mode mixing as seen

in the two upper curves of such a figure. The choice of values for d and q was made with

the aim of showing not only the transition from a non-oscillatory to an oscillatory regime,
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Figure 4. Dispersion relations for the first non-hydrodynamic vectorial QNM of the AdS black

brane in several dimensions, d = 4, 5, . . . , 10. The curves for the hydrodynamic modes are also

shown in the right panel for 0 ≤ q . 4.
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Figure 5. Time-evolution profiles of the vectorial mode perturbations for d = 6 (left panel) and

d = 7 (right panel). In the left panel we plot (from top to bottom) the curves for q = 2, 8, 5

wavenumbers. The transition from non-oscillatory (q = 2) to oscillatory late-time decay (q = 5, 8)

is clearly seen. In the right panel, from top to bottom, we see the curves for q = 3.2, 3.4, 3.6 . The

mode mixing is apparent.

but also to exploit the mode mixing feature of the QNM. This feature can be understood

by assuming that for intermediate times an oscillatory mode dominates, while for later

times a non-oscillatory mode dominates. In such a situation, the identification of a specific

QNM frequency from the numerical data is very difficult. This explains the missing parts

of the dispersion relation curves for d = 7, 8, 9, 10 in figure 4.

The graphs in figure 6 show the first five vectorial non-hydrodynamic quasinormal

modes for the six-dimensional black branes. The hydrodynamic QNM and the shear mode

of equation (5.3) are also shown in the right panel of this figure. We can see that the be-

havior of the non-hydrodynamic modes is very similar to the tensorial QNM (cf. figure 2).

Similarly to the tensorial sector, the higher overtone modes (n > 1) follow the overall be-

havior of the first non-hydrodynamic QNM. Among the most prominent differences between

vectorial and tensorial QNM, we see that the imaginary parts of the frequencies approach

zero with growing q faster in the vectorial case than in the tensorial case, which means
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Figure 6. Dispersion relations for the hydrodynamic mode and for the first five vectorial non-

hydrodynamic QNM of the AdS black brane in six dimensions. The dashed line in the right panel

corresponds to the shear mode of equation (5.3).

d = 5 d = 6

n wR wI wR wI

0 1.48286 0.57256 1.19804 0.58389

1 3.46702 2.68602 4.40613 2.62487

2 5.41108 4.71412 6.79949 4.40716

3 7.37878 6.72773 9.17633 6.15701

4 9.35747 8.73596 11.5503 7.89671

5 11.3422 10.7416 13.9214 9.63703

Table 3. The frequencies of the hydrodynamic and the first five non-hydrodynamic scalar QNM

in five- and six-dimensional spacetimes, with q = 2.

that the thermalization time in the dual CFT is dominated by the vectorial perturbations

in comparison to the corresponding tensorial modes.

The numerical results shown in figures 4 and 6 agree with the analytical relations

for small frequencies and wavenumbers (cf. right panel of figure 6), what corresponds to

the hydrodynamic limit of the QNM spectrum. The behavior of the hydrodynamic mode

is very important for the interpretation of quasinormal modes in terms of the AdS/CFT

correspondence since it furnishes the value of the diffusion constant D and dominates the

thermalization timescale of the perturbations for small wavenumbers. The study of the

thermalization time is one of the subjects of section 7.

6.4 Numerical results for the scalar QNM

In table 3 we list the hydrodynamic and the first five non-hydrodynamic scalar QNM of

the plane-symmetric AdS black holes in five and six spacetime dimensions, fixing q = 2.

Again, our results agree with those of ref. [56] for the five-dimensional case, while in the

six-dimensional case we have not found similar data in the literature for comparison.

We have used the Horowitz-Hubeny method to obtain the complete dispersion relations

of the dominant scalar quasinormal modes for d = 4, 5, and 6. These results are shown
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Figure 7. Dispersion relations for the dominant scalar QNM (the hydrodynamic mode) of the

plane-symmetric AdS black hole in d = 4, 5, 6 dimensions, as indicated.

in the graphics of figure 7. The fundamental QNM of the scalar perturbations is in fact

the hydrodynamic (sound-wave) mode. For large wavenumber values, the behavior of the

real and imaginary parts of the frequency is similar to that of the tensorial and vectorial

sectors, but it is quite different for small values of q. Such a difference can be attributed to

fact that the dominant scalar QNM in the regime of small wavenumbers is a hydrodynamic

mode with nonvanishing real part.

Figure 8 displays the numerical results for the QN frequencies of scalar gravitational

perturbations for d = 7, . . . , 10 spacetime dimensions. In such cases, the dispersion rela-

tions were obtained by the time-domain evolution method. This method in general gives

us information only on the dominant (lowest-wI ) mode, but as apparent in figure 8 we

were able to obtain the dispersion relations of the fundamental and the first excited modes

in the region 4 . q . 5. The results shown in such figure indicate the existence of a crit-

ical wavenumber value from which on the first non-hydrodynamic QNM is the dominant

mode of the scalar perturbations. Such a result appears in the form of a gap in the real

part of the frequencies (left panel in figure 8) and as a crossing of two curves wI(q) in the

right panel of figure 8. This behavior of the scalar QNM in higher-dimensional spacetimes

(d > 6) is completely different from what happens in d = 4, 5 and 6 dimensions, where

the hydrodynamic scalar QNM dominates all of the spectrum. A similar behavior with

two concurrent dominant modes in some region of the spectrum was also found for the

scalar-type gravitational perturbations of an asymptotically flat black string in d = 5, 6

and 7 dimensions [86]. However, in contrast with the black string case of ref. [86], we do

not find purely damped modes in this sector of the gravitational perturbations.

A few samples of the time-domain evolution profile of the scalar perturbations are

shown in figure 9. The oscillatory decay, which is characteristic of a QNM with wR 6= 0,

dominates the intermediate- and late-time behavior of the wave function ΦS. Again we do

not see any power-law tail at late stages.

The dispersion relation for the first five non-hydrodynamic scalar QNM in six-di-

mensional spacetime have a behavior very similar to the hydrodynamic mode and are

shown in figure 10. The sound-wave mode is also plotted in these graphs (the dashed line
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Figure 8. Dispersion relations for the dominant scalar QNM in d = 7, 8, 9 and 10 dimensions,

as indicated. Exceptionally in the region 4 . q . 5, we present both the fundamental and the

first excited modes obtained from the time-evolution method. Notice that the hydrodynamic QNM

dominates in the regime of small q, while the first non-hydrodynamic mode is the dominant mode

in the high-q regime.
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Figure 9. Time-evolution profiles of the scalar mode perturbation for selected values of q in d = 6

(from top to bottom, the curves are for q = 2, 8, 5, respectively).

in each panel). We again can see that the numerical results agree with the analytical results

of equation (5.6) (dashed lines) in the limit w, q ≪ 1. It is also seen that the peak (max-

imum) in the imaginary part of the frequency is smoothed out as the overtone number n

increases, and the position of the peak is displaced towards higher q-values. Such a behav-

ior is similar to the d = 5 case. However, it is important to note that the peaks for higher

overtones (n ≥ 1) in d = 4 are located at the origin, q = 0 (cf. ref. [51]). Aside this fact, it

seems that the overall profile of the dispersion relations does not strongly depend on the

number of spacetime dimensions, at least for d = 4, 5 and 6. For scalar perturbations, the

Horowitz-Hubeny method presented numerical problems also in six dimensions, as seen in

the wiggling curves for high overtones and high values of the wavenumber q in figure 10. As
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Figure 10. Dispersion relations for the hydrodynamic mode (n = 0) and for the first five scalar

non-hydrodynamic QNM in six dimensions. The dashed lines correspond to the sound-wave mode

of equation (5.6). The wiggles in the plots are due to numerical errors in the Horowitz-Hubeny

method.

far as we could check, the numerical error settles in as q grows and the convergence of the

method becomes very sensitive to the numerical precision. Even with these convergence

problems, the data in figure 10 is good enough to conclude that, for higher values of q, the

dispersion relations for the scalar QNM of the AdS black branes behave in a similar way

as the vectorial and tensorial QNM studied above (cf. figures 2 and 6).

6.5 More comments on the numerical results

The QNM spectra give us also information about the stability of the black hole background

spacetime. Following this approach, Kodama and Ishibashi [60] have proved that black

branes are stable against tensorial and vectorial perturbations in all dimensions, and against

scalar perturbations in d = 4. The stability of higher-dimensional black branes against

scalar perturbations from the analytical point of view is still an open problem. Our results

for the tensorial and vectorial sectors are consistent with the results by Kodama and

Ishibashi [60] and for the scalar sector we have not found unstable modes in d = 4, as

expected. Moreover, we have not found frequencies with negative imaginary parts for

small and intermediary wavenumbers q in d ≥ 5 dimensions. In order to investigate a

possible instability for large wavenumbers we can consider the asymptotic behavior of the

dispersion relations. In [62] it was observed that the analytical prediction by Festuccia

and Liu [61] describes quantitatively the numerical results if multiplied by a real function

which depends only on the overtone n. Such results show that the imaginary parts of

the QN frequencies are positive for all dimensions, which strongly suggests that these

asymptotically AdS black branes are stable against general gravitational perturbations.

In connection with the stability problem, a word of caution should be given here about

the geometric interpretation of the background spacetime considered in this work. The

plane-symmetric asymptotically AdS black holes (black branes) should not be confused with

other higher-dimensional extended black objects appearing in the literature. In particular,

as we have shown above, the black-brane spacetime (2.1) does not present any kind of

gravitational instability, independent of the parameter values. This is in contrast with
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Tensorial Vectorial Scalar

d wR wI wR wI wR wI

4 — — 1.84942 2.66385 1.84942 2.66385

5 3.11945 2.74668 3.11945 2.74667 3.11945 2.74668

6 4.13591 2.69339 4.13591 2.69339 4.13591 2.69339

7 5.00747 2.61247 5.00760 2.61266 5.00758 2.61249

Table 4. The frequencies of the first non-hydrodynamic QNM for all perturbation types, calculated

with q = 0.

other extended objects like the AdS black strings studied in ref. [87] which can present

Gregory-Laflamme gravitational instabilities [88] depending of the relation between the

longitudinal size of the horizon and the AdS radius.

At this point we are able to confirm the agreement of our numerical results with the

analysis of the subsection 5.2. We have seen in that section that in the limit of small

wavenumbers and large frequencies the non-hydrodynamic QN frequencies are identical

for all the perturbation sectors. In order to see that we choose q = 0 and calculate the

frequencies of the first non-hydrodynamic mode for each perturbation sector and for d = 4,

5, 6, 7. The numerical data are listed in table 4, from where we can see the very good

agreement between the analytical and the numerical results. Let us repeat here that, since

the Horowitz-Hubeny method presents convergence problems for d > 6, the results for

d = 7 in table 4 were obtained only by lowering the precision requirements. This explains

the small differences between the QN frequencies of each sector for d = 7 in table 4.

Notice, however, that the results for tensorial sector in d = 7 spacetime dimensions are in

agreement with the results of ref. [78].

In table 5 some results obtained by both of the numerical methods used in the present

work, namely the Horowitz-Hubeny method and the time domain evolution method, are

shown for comparison. We have chosen the fundamental mode (n = 0) and the number of

dimensions where QNM frequencies were found through both of the methods. It is seen

that the two methods yield consistent and satisfactory results for tensorial, vectorial and

scalar type perturbations.

7 QNM and the AdS/CFT correspondence

7.1 Thermalization timescale

According to the AdS/CFT duality, perturbing a black hole in the AdS bulk is equivalent

to perturbing a CFT thermal state in the AdS spacetime boundary, and the time evolution

of the black hole perturbation describes the time evolution of fluctuations of the thermal

state. In particular, the characteristic damping time of a quasinormal mode, τ = 1/ωI =

(d − 1)/(4πTwI ), is related to the thermalization timescale of the dual system, i.e., the

characteristic time the perturbed thermal system spends to return to thermal equilibrium.

This timescale is dominated by the quasinormal mode with lowest imaginary frequency.
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Power series Time evolution

Type d q wR wI wR wI

5 10 11.0586 1.75039 11.0594 1.74773

Tensorial 6 10 11.4325 1.70036 11.4313 1.69703

7 5 7.47908 2.12521 7.48168 2.12835

5 2 0 1.19612 0 1.19705

Vectorial 6 2 0 0.872326 0 0.872788

7 2 0 0.700830 0 0.701345

5 10 10.2220 0.536075 10.2713 0.677816

Scalar 6 10 10.4304 0.728055 10.4320 0.730181

7 2 1.02097 0.520255 1.01691 0.533577

Table 5. A comparison between some results obtained through the power series and the time

evolution methods for n = 0.

In this subsection we study the decaying timescale of each sector of perturbations. The

most interesting case is the vectorial sector, from which we begin the study.

7.1.1 Vectorial sector

Vectorial metric perturbations have two dominant quasinormal modes, depending on the

perturbation scale (wavelength): the hydrodynamic mode and the first non-hydrodynamic

mode. This happens because of a major difference between the behavior of these modes.

For the hydrodynamic mode one has wI → ∞ when q increases to infinity. On the other

hand, the non-hydrodynamic mode behaves like wI → 0 when q increases. Then, we can

see that from q = 0 on the thermalization timescale is dominated by the hydrodynamic

mode, this is true even when this timescale takes on the critical value, i.e., its lowest value.

Thereafter, the decaying timescale is dominated by the first non-hydrodynamic mode. Here

we study this transition and the values of q and wI where it occurs, as well as, the value

of the critical thermalization timescale in some dimensions.

In the right panel of figure 4 we have the hydrodynamic modes together with the

first non-hydrodynamic quasinormal modes for d = 4, 5, . . . , 10 dimensions. From the

plots we can see that the hydrodynamic mode dominates for small wavenumber and the

non-hydrodynamic mode dominates for intermediate wavenumber. For d = 6 dimensions

this behavior is better observed in figure 6, where one can see the transition from non-

oscillatory to oscillatory late-time decay. The explicit values for the critical timescale in

some dimensions are listed in table 6. It is seen that the values for τ increase smoothly

with the number of dimensions d. The critical value for q in d = 5 is consistent with the

value found in ref. [89].

7.1.2 Scalar sector

The relaxation timescale related to the scalar gravitational perturbations in d = 4, 5, 6 is

dominated entirely by the hydrodynamic QNM. However, the dispersion relation for the

imaginary part of the hydrodynamic frequency has a peak where wI is maximum, so that
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Vectorial Scalar Tensorial

d q wI τ (T−1) q wI τ (T−1) q wI τ (T−1)

4 1.935 2.29518 0.104015 3.213 0.414508 0.575942 — — —

5 2.622 2.40746 0.132218 3.360 0.913906 0.348296 0 2.69339 0.115889

6 3.100 2.38173 0.167058 4.081 1.66030 0.239648 0 2.74668 0.147727

7 — — — — — — 0 2.61200 0.182797

Table 6. The values of q and wI for which τ assumes the minimum value for each sector of the

gravitational perturbations.

in this peak we have a critical (minimum) thermalization time (cf. figures 7 and 10). The

critical values in this case are shown in table 6. In this sector of gravitational perturbations

and for d ≤ 6, the values of τ decrease smoothly with d, and we can see that this behavior

is the opposite of that of the vectorial and tensorial sectors.

7.1.3 Tensorial sector

Firstly we must remember that the tensorial modes arise only in d ≥ 5 spacetime dimensions

and that the tensorial sector does not present hydrodynamic modes, then the timescale is

dominated by the first non-hydrodynamic quasinormal mode whose behavior we can see in

figures 1 and 2. The absolute values of the imaginary frequency decrease with q, so that

the critical timescale is in q = 0. In this case the values are listed in table 6. In this sector

the values for τ increase smoothly with d, and this behavior is the same as that of the

vectorial sector.

7.2 Causality in the dual CFT plasma

Recently some studies have used the wave-front velocity instead of the group velocity in

order to analyze the causality of signal propagation in connection with the physics of the

dual CFT plasma [35, 89]. The wave-front velocity is considered a reliable indicator if one

wants to study how fast a signal can be transmitted through a dispersive medium because

it limits the speed of propagation of a signal through the medium. The wave-front velocity

is defined as the velocity with which the onset of a signal travels [89]:

vF = lim
q→∞

w

q
. (7.1)

For vF smaller than the speed of light, causality is preserved (in this work, c = 1). It also

follows that the hydrodynamic vectorial mode violates causality since from eq. (5.3) it has

an infinite limit for the wave-front velocity. However, it was shown here that the vectorial

hydrodynamic mode does not dominate in the large wavenumber regime. Therefore one

should analyze the first non-hydrodynamic QNM, which is the dominant mode in the

limit q → ∞, and for this mode it holds the general asymptotic formula w = q + αq−β ,

where β = (d − 3)/(d + 1) and α = αR + iαI is a complex parameter depending on the

number of dimensions d and in the overtone index n. Therewith, we found numerically

that limq→∞(w/q) = 1. This provides a proof of the causality of signal propagation in the

dual CFT plasma for any spacetime dimension.
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8 Final comments and conclusion

In this work we have studied the complete quasinormal spectra of gravitational perturba-

tions of d-dimensional AdS black branes. Master equations for gravitational perturbations

were derived for the Kovtun-Starinets variables [56] in d spacetime dimensions, and, for

comparison, the fundamental equations with the Regge-Wheeler-Zerilli variables [65] were

also explored. Among the relevant general results we can mention the proof given in sec-

tion 4 that for d ≥ 5 dimensions, RWZ and KS variables give the same QNM spectra. In

this way we have unified two different points of view for a consistent definition of gravi-

tational quasinormal modes: non-deformation of the boundary metric, associated to RWZ

variables, and the identification of QN frequencies with poles of correlators, associated to

KS variables.

Furthermore, the use of new gauge-invariant variables in d-dimensional spacetimes al-

lowed the calculation of the hydrodynamic scalar and vectorial QNM of plane-symmetric

AdS black holes in d spacetime dimensions. The expressions (5.3) and (5.6) are in complete

agreement with the CFT predictions, furnishing a non-trivial test to the AdS/CFT con-

jecture [1]. In addition, the results found here for arbitrary d reproduce exactly the results

found in the literature for d = 4 and d = 7 [15, 16, 51], and for d = 5 [13, 14, 56]. Our

analytical and numerical calculations confirm the presence of hydrodynamic (sound-wave)

modes in any dimension.

The minimum value for the thermalization timescale was obtained for d = 4, 5, 6 and

7. For the tensorial sector the thermalization time is totally determined by the first non-

hydrodynamic mode, while in the scalar sector for d = 4, 5, 6 it is dominated by the

hydrodynamic QNM alone. More interestingly, the vectorial sector for any d and the

scalar sector for d ≥ 7 have two different dominant QNM, the hydrodynamic mode for lower

wavenumber values and the first non-hydrodynamic mode for higher wavenumber values.

Even though the numerical methods presented some convergence problems, it was

possible to observe a general behavior of the QNM: the dispersion relations for each sector

are very similar for all the dimensions, except for a few particularities specific to some

specific mode and dimension. In particular, we can mention the local “knee” appearing in

the curve of the real dispersion relation of the four-dimensional vectorial sector, and the

local maximum in the imaginary parts of frequency that appears for d > 4 in the scalar

sector. Our analysis enables us to infer the absence of tails in the time evolution profiles

of gravitational perturbations of non-extreme black branes [78]. However, the presence of

tails in extreme AdS black holes (and black branes) spacetimes [84] is a problem which

should be investigated in detail in a future work.

It is also worth noticing that, as expected, our numerical results do not show any

instability of the black branes against tensor- and vector-type perturbations. Moreover,

for scalar-type perturbations in d ≥ 5 our results suggest the stability of the AdS black

branes, what is an important result since the proof of such a stability is still an open

question [60].

Another important result is the confirmation that signal propagation in the dual CFT

plasma does not violate causality, independently of the number of dimensions of the AdS
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spacetime. Although the wave-front velocity related to the hydrodynamic vectorial mode

grows with the wavenumber, the signal propagation in the large wavenumber regime is

dominated by the first non-hydrodynamic vectorial mode, which obeys a relation of the

form w = q + αq−β , with constant α and non-negative constant β, resulting in the wave-

front velocity vF = 1.

Finally, even though we have used two different numerical methods, a power series

and a time evolution methods, we cannot confirm the existence of the highly real modes

of Daghigh and Green [63, 64]. The existence of such QNM, and the reason why they

appear in analytical studies but not in numerical computations, are questions that should

be addressed in the future.
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